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Abstract In plant breeding, a large number of progenies

that will be discarded later in the breeding process must be

phenotyped and marker genotyped for conducting QTL

analysis. In many cases, phenotypic preselection of lines

could be useful. However, in QTL analyses even moderate

preselection can have a significant effect on the power of

QTL detection and estimation of effects of the target traits.

In this study, we provide exact formulas for quantifying the

change of allele frequencies within marker classes,

expectations of marker contrasts and the variance of the

marker contrasts under truncation selection, for the general

case of two QTL affecting the target trait and a correlated

trait. We focused on homozygous lines derived at random

from biparental crosses. The effects of linkage between the

marker and the QTL under selection as well as the effect of

selection on a correlated trait can be quantified with the

given formulas. Theoretical results clearly show that

depending on the magnitude of QTL effects, high selection

intensities can lead to a dramatic reduction in power of

QTL detection and that approximations based on the

infinitesimal model deviate substantially from exact solu-

tions. The presented formulas are valuable for choosing

appropriate selection intensity when performing QTL

mapping experiments on the data on phenotypically pres-

elected traits and enable the calculation and bias correction

of the effects of QTL under selection. Application of our

theory to experimental data revealed that selection-induced

bias of QTL effects can be successfully corrected.

Introduction

Quantitative trait locus (QTL) mapping aims at the iden-

tification of significant associations between molecular

marker loci and loci influencing quantitative traits for

subsequent use in marker-assisted selection. In plant

breeding, experimental QTL mapping studies are fre-

quently performed on large experimental populations of

randomly derived progenies (Schön et al. 2004). As a

consequence, phenotypic and genotypic data are generated

for a large number of progenies with limited genetic value.

Different strategies have been proposed to increase the

efficiency of QTL mapping using selected populations for

QTL identification and estimation of effects. Lander and

Botstein (1989) as well as other authors (e.g., Darvasi and

Soller 1992; Gallais et al. 2007) demonstrated the useful-

ness of bidirectional selection (selection of both tails of the

phenotypic distribution) with respect to saving genotyping

costs, when only selected progenies were genotyped.

High-throughput genotyping has, however, become rel-

atively cost efficient and today phenotyping of lines in

multi-location field trials is the major bottleneck in genetic

analyses as well as in commercial breeding. As a conse-

quence, it would be highly useful if extensive QTL anal-

yses could be performed as part of an ongoing breeding
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program on populations where selection has been per-

formed either directly on the target trait with low intensity

or on correlated traits at early selection stages. Further,

QTL mapping in selected populations might be the only

possible type of analysis if only one extreme of a popula-

tion survives because of its exposure to a stressor, such as

high salinity, temperature extremes, drought and disease

(Lebowitz et al. 1987). Censored data are also common

in situations where phenotyping is performed with techni-

cal equipment (sensor) unable to register values below a

certain threshold (Foody et al. 2009).

In all these circumstances, the effects of selection on the

power of QTL detection and unbiased estimation of QTL

effects need to be taken into account, because (1) fre-

quencies of the QTL and the marker alleles in the selected

samples will deviate from the frequencies of the unselected

(i.e., in the absence of selection) reference population, (2)

expectations of marker contrasts will be biased due to the

selection, (3) the genetic variance in the selected tail will

be reduced, and (4) selection on correlated traits can affect

the power of QTL mapping for the target trait due to

pleiotropic or linked QTL.

The effect of truncation selection on the power of QTL

detection compared to the case of no selection has been

investigated in theoretical and computer simulation studies

(Gallais et al. 2007; Mackinnon and Georges 1992; Navabi

et al. 2009; Tanksley and Nelson 1996). Both, theoretical

and simulation results showed that the power of QTL

detection was reduced compared to equally sized random

populations when only one tail of the distribution was

analyzed. However, despite the reduced statistical power,

QTL identification and characterization in selected popu-

lations can be of advantage to classical QTL mapping

experiments if expenditures for genotyping and phenotyp-

ing can be reduced and QTL mapping can be integrated into

ongoing breeding programs. While several authors gave

approximate solutions for estimating the effects of bidi-

rectional selection on QTL parameters (e.g., Bovenhuis and

Spelman 2000; Darvasi and Soller 1992) to our knowledge

no solutions have been presented for unbiased estimation of

QTL parameters under truncation selection.

In this study, we derive exact formulas for expectations

of the marker contrast and the variance of the marker

contrast for truncation selection using probabilities of the

marker genotypes in the selected lines considering the

truncation selection point. The derivations are given for the

case of fully homozygous lines such as recombinant inbred

lines (RILs) or doubled-haploid (DH) lines in plant species

derived from biparental crosses of homozygous parents.

We present general analytical solutions to correct for the

bias induced by selection of the target trait. In addition,

we also consider the case of selection on a correlated

trait. Based on these formulas, we compare the power of

QTL detection, the bias of QTL effects and the variance

explained by QTL in the presence and absence of trun-

cation selection. In addition, we present a numerical

example illustrating the application of our results to

obtain unbiased estimates of QTL effects under truncation

selection.

Theory

Definitions and assumptions

We regard two correlated traits X* and X and perform

truncation selection on phenotypic data of X*. Without loss

of generality we assume selection of the upper tail of the

distribution, which is subsequently employed for pheno-

typing and QTL mapping of X. We assume two linked QTL

Qi and Qj which affect both X and X* traits and a marker

locus Mk linked to them. In addition, we assume that the

phenotypic expressions of trait X* and X are controlled by a

large number of other genes acting independently of the

two QTL. Given that X* is a secondary trait used for

indirect selection of X, we assume that the underlying QTL

act pleiotropically on both traits.

We consider only homozygous lines derived from a

heterozygous F1 of the biparental cross P1 9 P2. Geno-

types are identified by their corresponding haplotypes for

simplification of our notation, and we use indices r; s; t ¼
1; 2 to denote if the alleles at Qi, Qj and Mk were derived

from P1 or P2, respectively. The notation used in this

treatise is summarized in supplementary material S1.

In the absence of selection, the three loci genotype

frequencies of DH lines with haplotype Qir Qjs Mkt
can be

expressed as:

cir jskt
¼ ½1þ ð�1Þrþskij þ ð�1Þrþtkik þ ð�1Þsþtkjk�=8;

ð1Þ

where kij ¼ 1� 2rij is the linkage value between loci i and

j and rij is their recombination value (Schnell 1961). Fur-

ther derivations in this treatise are given for DH lines, but

the relationships hold also true for RILs, replacing kij by

1=2ð2� kijÞ, and in the general case of lines developed

from intermated populations, replacing kij by 4Dij, where

Dij denotes the linkage disequilibrium between the two loci

as described by Frisch and Melchinger (2007).

Since the phenotypic expressions of trait X* and X are

controlled by the two QTL and also by a large number of

other QTL acting independently of the two QTL, we

termed the sum of these polygenic effects and random

environmental effects as residual effect. This is assumed

to follow a bivariate normal distribution with unit vari-

ance and correlation q. Thus, the joint distribution of
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X*and X has a mixture distribution of bivariate normal

distributions

X�

X

� �
¼
X2

r¼1

X2

s¼1

cir js

X�ðQir QjsÞ
XðQir QjsÞ

� �
with

X�ðQir QjsÞ
XðQir QjsÞ

� �
� N

l�
ir js

l
ir js

 !
;

1

q

q

1

� � !
ð2Þ

and cir js ¼
P2

t¼1 cir jskt
:

Without loss of generality, we assume E
X�

X

� �� �
¼ 0,

i.e.,
P2

r¼1

P2
s¼1 cir js

l�
ir js

l
ir js

� �
¼ 0

0

� �
.

Expressing the means in terms of additive affects ai
*, aj

*,

and ai, aj for QTL Qi and Qj, respectively, and denoting the

epistatic interactions among them with aa�ij and aaij;we have

l�ir js
¼ ð�1Þrþ1a�i þ ð�1Þsþ1a�j þ ð�1Þrþsaa�ij;

lir js ¼ ð�1Þrþ1ai þ ð�1Þsþ1aj þ ð�1Þrþsaaij:
ð3Þ

We assume that truncation selection is practiced so that

only lines with phenotypic values of X*surpassing the point

of truncation T are selected.

Marker allele frequencies under selection

With respect to the alleles r and s at QTL Qi and Qj,

respectively, each DH line corresponds to the random

variable QiQj with realizations Qir Qjs (r, s = 1, 2). Hence,

the four haplotypes Qir Qjs define a complete set of disjoint

events in the entire sample space and with the theorem of

total probability, we obtain

PðMkt
j½X�[ T�Þ ¼

X2

r¼1

X2

s¼1

PðQir Qjs Mkt
j½X�[ T �Þ: ð4Þ

Since (1) truncation selection affects only the progeny

generation (DH lines) and (2) meiotic recombination

among loci happens only in the parental generation(s)

and is unaffected by the genotype at the QTL and markers,

both processes are stochastically independent from each

other. Consequently, we have

Pð½X�[ T �jQir QjsÞ ¼ Pð½X�[ T �jQir Qjs Mkt
Þ

and the probability of a DH line being selected, when its

haplotype is Qir Qjs , can be denoted as

wir js
¼ Pð½X�[ T �jQir QjsÞ ¼ Pð½X�ðQir QjsÞ[ T �Þ: ð5Þ

Finally, applying Bayes’ formula (Mood et al. 1974,

p. 36, Theorem 30) for each summand in Eq. 4, we obtain

pkt
¼ PðMkt

j½X�[ T �Þ ¼
P2

r¼1

P2
s¼1 wir js

cir jskt

aT
; ð6Þ

where

aT ¼
X2

r¼1

X2

s¼1

X2

t¼1

wir js
cir jskt

ð7Þ

is the proportion of the DH lines in the upper selected tail

after truncation selection for X* at point T.

Making use of the relationship cir jskt
¼ 1

2
cir js þ ½ð�1Þrþt

kik þ ð�1Þsþtkjk�=8, we obtain

pkt
¼ 1

2
þ ½kikðwi1j1

þ wi1j2
� wi2j1

� wi2j2
Þ

þ kjkðwi1j1
� wi1j2

þ wi2j1
� wi2j2

Þ�=8aT :
ð8Þ

Thus, for the change in marker allele frequency Mk1

compared to the case of no selection we obtain the exact

formula

Dpk1
¼ ½kikðwi1j1

þ wi1j2
� wi2j1

� wi2j2
Þ

þ kjkðwi1j1
� wi1j2

þ wi2j1
� wi2j2

Þ�=8aT :
ð9Þ

Marker class means and contrasts

We calculate nkt
¼ EðXjMkt

; ½X�[ T �Þ, the expectation of

X in marker class Mkt
after truncation selection for X* at

point T by making use of results on the expectation of

conditional expectations (e.g., Mood et al. 1974, p. 158,

Theorem 6):

EðXjMkt
; ½X�[ T �Þ ¼ EðEðXjQiQj;Mkt

; ½X�[ T �ÞÞ

¼
X2

r¼1

X2

s¼1

PðQir Qjs jMkt
; ½X�[ T �Þ

EðXjQir Qjs Mkt
; ½X�[ T �Þ ð10Þ

Application of the Bayes’ formula yields the relative

frequencies of haplotype Qir Qjs in marker class Mkt
of the

selected fraction

sir jskt
¼ PðQir Qjs jMkt

; ½X�[ T �Þ

¼ Pð½X�[ T �jQir QjsÞPðQir Qjs Mkt
ÞP2

r¼1

P2
s¼1 Pð½X�[ T �jQir QjsÞPðQir Qjs Mkt

Þ

¼
wir js

cir jsktP2
r¼1

P2
s¼1 wir js

cir jskt

: ð11Þ

Based on the results on the selection gain in a

correlated trait under truncation selection (Cochran

1951), we have

EðXjQir Qjs Mkt
; ½X�[ T�Þ ¼ EðXðQir QjsÞj½X�ðQir QjsÞ[ T �Þ

¼ lir js þ qiðT � l�ir js
Þ

ð12Þ

where iðT � l�ir js
Þ refers to the standardized selection dif-

ferential with truncation selection at point T � l�ir js
.
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Combining this with the previous results, we obtain

nkt
¼ EðXjMkt

; ½X�[ T �Þ

¼
X2

r¼1

X2

s¼1

sir jskt
ðlir js þ qiðT � l�ir js

ÞÞ; ð13Þ

and for the contrast between the two marker genotypes we

obtain

dk ¼ nk1
� nk2

¼
X2

r¼1

X2

s¼1

ðsir jsk1
� sir jsk2

Þðlir js þ qiðT � l�ir js
ÞÞ: ð14Þ

This general formula simplifies for special cases

described in Table 1. Case 1 assumes that one QTL (Qi)

affects only trait X* and the other QTL (Qj) affects only X.

If none of the QTL shows pleiotropy, it is reasonable to

assume absence of epistasis between them, i.e., a�j ¼ 0; ai ¼
0; aa�ij ¼ 0 and aaij ¼ 0: Thus, we get l�ir js

¼ ð�1Þrþ1a�i ;

lir js ¼ ð�1Þsþ1aj and wir js
¼ wir

for r; s ¼ 1; 2, and if we

define Diða�i Þ ¼ iðT � a�i Þ � iðT þ a�i Þ, we obtain

dk ¼
2kjkaj½ðwi1

þ wi2
Þ2 � kijðwi1

� wi2
Þ2� þ 4kikqDiða�i Þwi1

wi2

ð1� k2
ikÞðw

2
i1
þ w2

i2
Þ þ 2ð1þ k2

ikÞwi1
wi2

:

ð15Þ
We will now proceed with special cases where we

consider only one QTL (Qi = Qj), which acts pleiotropi-

cally on both traits X* and X and we assume additionally

that Mk is located at the position of the QTLQi (Case 2,

Table 1). With high-throughput genotyping available, it

can be assumed that linkage between the QTL under

selection and the marker will be almost complete. Hence,

by inserting ai = aj, ai
* = aj

*, and kij = kik = 1, which

implies kjk ¼ 1, we obtain from Eq. 15

di ¼ 2ai þ qDiða�i Þ: ð16Þ

Equation 16 illustrates that the marker contrast is

influenced by two components. The first part 2ai reflects

the effect of Qi influencing the trait X. The second part

reflects the effect of selection on X* via QTL Qi on the

correlated residuals.

In Case 3, we assume X* = X, i.e., the trait under

selection is also used for QTL mapping (Table 1). Like in

Case 2, we consider only one QTL (Qi) lying directly on

the marker (Mk = Qi) and the additional restrictions

ai = aj = ai
* = aj

* and q ¼ 1. Thus, we obtain

di ¼ 2ai þ DiðaiÞ; ð17Þ

from the results of Case 2. Since Di(ai) \ 0 for ai [ 0,

Eq. 17 shows that under truncation selection, di does not

yield an unbiased estimate of 2ai, but is biased downwards.

The extent of the absolute value of the bias increases with

larger values for ai and T, i.e., smaller values of aT. The

relative bias in the estimates of the QTL effects, reflected

by the ratio of the marker contrast di divided by 2ai, is

illustrated as a function of ai and aT in Fig. 1a for Case 3.

The percentage of the phenotypic variance explained by

Table 1 Exact solutions for the expectation of the marker contrast (dk) and their variance (rk
2) for cases considered in this treatise together with

the approximations for the marker contrast

Cases:

trait(s)

Residual

correlation

QTL QTL

effectsa
Marker Linkage

values

Solution for Approximate

solution for

dk or di

dk rk
2 dk

see Eq.

General: 2 QTL affecting two traits

X 6¼ X� q 6¼ 1 Qi ! X;X�

Qj ! X;X�
b

c c c (14) (29)

Case1: 2 QTL affecting different traits

X 6¼ X� q 6¼ 1 Qi ! X�

Qj ! X

a�i 6¼ 0 a�j ¼ 0

aj 6¼ 0 ai ¼ 0

c c (15) d dk � 2kjkaj � 2kikq jðTÞa�i

Case 2: 1 QTL affecting different traits

X 6¼ X� q 6¼ 1 Qi ¼ Qj ! X;X� ai ¼ aj a�i ¼ a�j Mk ¼ Qi kij ¼ kik ¼ 1 (16) (31) di � 2ai � 2q jðTÞa�i
Case 3: 1 QTL affecting one trait

X ¼ X� q ¼ 1 Qi ¼ Qj ! X ai ¼ aj ¼ a�i ¼ a�j Mk ¼ Qi kij ¼ kik ¼ 1 (17) (33) di � 2aið1� jðTÞÞ
a Except for the general case, absence of epistasis is assumed
b Qi ! X stands for QTL Qi that affects trait X
c No restriction
d Must be derived from the general case with restrictions on the model parameters
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the QTL in the graph equals a2
i =ða2

i þ 1Þ, where 1 is the

sum of the polygenic and error variance (i.e., residual

variance).

Assuming the distribution of the trait under selection to

follow a normal probability density function and considering

the Taylor expansion of Di(ai) in terms of ai, which yields

DiðaiÞ ¼ �2jðTÞai þ oða3
i Þ; ð18Þ

where jðTÞ ¼ iðTÞðiðTÞ � TÞ and oða3
i Þ denotes the

remainder term of the Taylor expansion, we obtain for

small values of ai or for moderate selection, the following

approximation

DiðaiÞ � �2jðTÞai: ð19Þ

The expectation of the marker contrast can be

approximated for the different cases in Table 1 using

Taylor expansions for Di(ai), ðwi1
þ wi2

Þ2 and ðwi1
� wi2

Þ2

and rationale functions of these functions. Combining these

results, we obtain the approximations of dk given in

Table 1, based on the first two terms of the Taylor

expansion. Approximately unbiased estimates of ai can be

obtained from these equations.

In Case 3 (one QTL affecting one trait), we can obtain

from Eq. 17 an unbiased estimate of ai by solving the non-

linear Eq. 17 for ai using Newton’s rule or any other

suitable method (Deuflhard 2004). Alternatively, by solv-

ing Eq. 17 in combination with Eq. 19 for ai, we obtain the

following estimate for ai

x̂i ¼
d̂i=2

1� jðTÞ ð20Þ

where d̂i is the marker contrast of the truncated selected

population. Application of this formula is provided with a

numerical example subsequently.

In Case 2 (one QTL affecting different traits), one must

first obtain an unbiased estimate of ai
* using the bias cor-

rection of Eq. 20 in QTL mapping of X* and then use this

value together with j(T) and an estimate of q to calculate

x̂i ¼ d̂i=2þ q̂jðTÞâ�i : ð21Þ

For a QTL with small effect ai
*, the residual correlation q

is closely approximated by the phenotypic correlation of

X*and X. Using the same procedure and an estimate of the

linkage value between Qi and Qj, one can calculate unbiased

estimates of ai for Case 1 (2 QTL affecting two traits).

Beside the three cases in Table 1, we considered addi-

tional cases and gave solutions for the expectation of the

marker contrast and their approximation in supplementary

material S2 and S3. Briefly, Case 1a is a simplification of

Case 1 because it considers the marker Mkt
located directly at

the position of QTL Qi. Cases 2a and 3a assume the same

conditions as Cases 2 and 3, respectively, but the marker Mkt

is not located directly at the position of the QTL Qi.

Variances of marker class means and contrasts

For our derivations, we make use of a theorem from

statistical theory about the conditional variance (e.g.,

QTL effect ia

Se
le

ct
ed

 p
ro

po
rti

on
  

Tα

Se
le

ct
ed

 p
ro

po
rti

on
  

Tα

QTL effect ia

2
i

i
ia

δδ =

Se
le

ct
ed

 p
ro

po
rti

on
  

Tα

QTL effect ia

2
2

4
i

i

σσ =

Relative 
Power 

A

B

C

Fig. 1 a Expected marker contrast (di) under selection, b expected

variance of the marker contrast (ri
2) under selection and c power of

the F test (1 - b) under selection, all expressed relative to their

corresponding statistics in the absence of selection for Case 3 (one

QTL lying on the marker and affecting one trait). All graphs are

presented as a function of the true QTL effect ai and the selected

proportion aT of the DH lines under truncation selection
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Mood et al. 1974, p. 159, Theorem 7). Accordingly, we can

express

r2
kt
¼ varðXjMkt

; ½X�[ T �Þ
¼ varðEðXjQiQj;Mkt

; ½X�[ T�ÞÞ
þ EðvarðXjQiQj;Mkt

; ½X�[ T �ÞÞ: ð22Þ

The first term on the right-hand side of Eq. 22 refers to

the variance between the four QTL haplotypes in marker

class Mkt
within the selected fraction. Making use of

Eqs. 11 and 12, we obtain

varðEðXjQiQj;Mkt
; ½X�[ T �ÞÞ

¼
X2

r¼1

X2

s¼1

sir jskt
ðlir js þ qiðT � l�ir js

Þ � nkt
Þ2: ð23Þ

The second term on the right-hand side of Eq. 22 refers

to the residual variance of the QTL-marker haplotype class

Qir Qjs Mkt
. Making use of Cochran’s (1951) result on

the variance of a correlated trait y after truncation selection

for x in the case of a bivariate normal distribution, we

have varðXjQir Qjs Mkt
; ½X�[ T �Þ ¼ 1� q2jðT � l�ir js

Þ and

obtain

EðvarðXjQiQjMkt
; ½X�[ T �ÞÞ

¼
X2

r¼1

X2

s¼1

sir jskt
ð1� q2jðT � l�ir js

ÞÞ:
ð24Þ

Using the relationship
P2

r¼1

P2
s¼1 sir jskt

¼ 1 for t = 1,

2, which follows directly from Eq. 11, and combining

Eqs. 23 and 24, we obtain for the general case

r2
kt
¼ 1þ

X2

r¼1

X2

s¼1

sir jskt

½ðlir js þ qiðT � l�ir js
Þ � nkÞ2 � q2jðT � l�ir js

Þ�: ð25Þ

For Case 1, we have jðT � l�ir js
Þ ¼ jðT þ ð�1ÞraiÞ and

consequently

For Case 2, we obtain

r2
ir
¼ 1� q2jðT þ ð�1Þra�i Þ ð27Þ

The two terms in this equation reflect the total variance

of residual effects in X after truncation selection for X*.

The reduction in the variance, compared to the variance of

the residual effects X(QiQj) in the absence of selection, is

attributable to the correlated response caused by the effect

of selection on the residuals of X*(QiQj).

Likewise, for Case 3 we have

r2
ir
¼ 1� jðT þ ð�1ÞraiÞ ð28Þ

as expected from Eq. 10 of Cochran (1951).

Turning now to the variance of marker contrasts, we

have to take into account that if the selected fraction

comprises a total of N DH lines, we expect a proportion of

pk1
to carry the marker allele Mk1

and pk2
¼ 1� pk1

to carry

the marker allele Mk2
. Hence, the expected variance

between the difference of �Xkt
, the mean of X in marker

class Mkt
(t = 1, 2), is

varð �Xk1
� �Xk2

Þ ¼ 1

Npk1

r2
k1
þ 1

Npk2

r2
k2
¼ 1

N
r2

k ; ð29Þ

where

r2
k ¼

pk2
r2

k1
þ pk1

r2
k2

pk1
pk2

¼ 4

1� 4Dp2
k1

r2
k1
þ r2

k2

2
þ Dpk1

r2
k2
� r2

k1

� �� �
ð30Þ

with Dpk1
as defined in Eq. 9.

Figure 1b shows a graph of the variance of the marker

contrast relative to its expectation in the absence of

selection as a function of the effect of the QTL ai and the

selected fraction aT for Case 3, based on the exact solution

in Eq. 30.

In the general case and also for Case 1, the formula for

r2
k cannot be simplified. However, for Case 2, we obtain

from Eq. 27:

r2
i ¼

4

1� 4Dp2
i1

1� q2 jðT þ a�i Þ þ jðT � a�i Þ
2

��

þ jðT � a�i Þ � jðT þ a�i Þ
	 


Dpi1

��
; ð31Þ

where Dpi1 ¼ ðwi1
� wi2

Þ=2ðwi1
þ wi2

Þ: Using a Taylor

expansion for r2
i in terms of ai

*, we obtain the following

approximation:

r2
i � 4½1� qjðTÞ� ð32Þ

and for Case 3, we get from Eq. 28

r2
kt
¼ 1þ

P2
r¼1

P2
s¼1 wir

cir jSkt
ðð�1Þsþ1aj þ qiðT þ ð�1Þra�i Þ � nkÞ2 � q2jðT þ ð�1Þra�i Þ
h i

P2
r¼1 wir

cirkt

: ð26Þ

548 Theor Appl Genet (2012) 124:543–553

123



r2
i ¼

4

1� 4Dp2
i1

1� jðT þ a�i Þ þ jðT � a�i Þ
2

��

þ½jðT � a�i Þ � jðT þ a�i Þ�Dpi1

��
ð33Þ

with the approximation

r2
i � 4½1� jðTÞ� ð34Þ

Effects of selection on power of QTL detection

In the regression approach for QTL mapping (Haley and

Knott 1992; Martinez and Curnow 1992), an F test Fk ¼
MSk=MSEk is used for testing the presence of a QTL at

marker Mk, where MSk is the mean square between the

two marker classes and MSEk the weighted error mean

squares within marker class Mk. In the case of DH lines,

there are only two marker classes and consequently, MSk

follows a v2 distribution with one degree of freedom.

Under truncation selection with a sample size N of the

selected fraction, the variance r2
kt

within each marker class

Mkt
can differ between the two marker classes. Therefore,

MSEk follows approximately a central v2 distribution with

expectation

MSEk ¼
r2

k1

pk1

þ
r2

k2

pk2

� �
1

N
¼ r2

k

N
ð35Þ

with r2
kt

and pkt
defined in Eqs. 25 and 8, and the expected

degrees of freedom calculated according to Satterthwaite

(1946)

nk ¼
Nðr2

kÞ
2

ðr2
k1
Þ2

p2
k1
ðpk1
�1

NÞ
þ

ðr2
k2
Þ2

p2
k2
ðpk2
�1

NÞ

ð36Þ

Thus, under the null hypothesis Ho: dk = 0, the test

statistic is Fk * Fð1; nk; 0), i.e., a central F distribution.

Under the alternative hypothesis H1: dk = 0, Fk follows a

non-central F distribution Fk * Fð1; nk; /2Þ; with non-

centrality parameter /2. Adopting results on the non-

centrality parameter in a one-factor design analysis of

variance given by Graybill (1976, p. 518) we obtain for

truncation selection:

/2 ¼ d2
k

r2
k

N

8
; ð37Þ

with dk
2 and rk

2 as defined in Eqs. 14 and 30, respectively.

Hence, for a given Type 1 error a, the power (1 - b) of the

F test Fk to detect a QTL with a Type 2 error of b is

1� b ¼ 1� PðFk\Fað1; nkÞÞ ð38Þ

where Fað1; nkÞ denotes the a quantile of a central F dis-

tribution with 1 and nk degrees of freedom (Kendall and

Stuart 1979, page 269). Equation 38 can be used to

compare the power of QTL detection under truncation

selection with that in the absence of selection. Likewise,

Eq. 38 can be used to calculate the sample sizes required

under truncation selection for achieving the same power of

QTL detection as achieved for a sample size N in the

absence of selection.

Using the approximations of dk and rk
2 for Case 3 in

Eqs. 17 and 34, we obtain for truncation selection

/2 � a2
i ½1� jðTÞ�N

2
, ð39Þ

and nk & N - 2. By comparison, in the absence of

selection we have

/2 ¼ a2
i

N

2
: ð40Þ

Consequently, the power of the F test Fk is reduced with

truncation selection compared to QTL mapping in the

absence of selection.

The theoretical power of the F test statistic in the

absence and presence of selection was calculated for Case

3 for different QTL effects using Eqs. 37 and 40, respec-

tively. Numerical results are shown in Fig. 1c.

Numerical example

We demonstrate application of our theory with experi-

mental data of a study by Martin et al. (2011). Briefly, 150

random DH lines developed from the cross UH006 9

UH007 were genotyped with 129 SSR markers and phe-

notyped for Giberella ear rot resistance (GBR) in four

environments with heritability = 0.77. Using composite

interval mapping according to established procedures and a

LOD threshold of 3.8, we detected two QTL explaining

17.7 and 18.1% of the genetic variance for GBR (Table 2).

For investigating the effects of truncation selection, we

analyzed the subset of the 75 most resistant DH lines based

on GBR entry means across environments, corresponding

to aT = 50% and selection intensity i = 0.798. A QTL

analysis was performed with software PLABQTL (Utz and

Melchinger 1996) at fixed QTL positions taken from the

QTL analysis of the reference set to avoid inflation of QTL

estimates due to model selection. For both QTL, the

additive effects ai estimated from the selected subset,

corresponding to d̂i=2, were about one-third in magnitude

compared to the QTL effect âi estimated from the unse-

lected reference set. This illustrates the substantial down-

ward bias in QTL estimates under truncation selection even

with moderate selection intensity. Treating both QTL

independently according to the procedure outlined for Case

3, the QTL effects d̂i=2 estimated from the selected subset

were corrected using the approximation given in Eq. 20,
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with 1 - j(T) = 0.363, calculated from Eq. 26. For both

QTL, the corrected QTL effect estimates ðx̂iÞ deviated

from âi by less than 5%, which illustrates the correction to

work well. A second example of bias correction in a

selected subsample is given in supplementary material S4

and S5.

Discussion

In general, all DH lines are phenotyped and marker gen-

otyped for conducting QTL analysis, even thought a large

part of them is discarded later in the breeding process. In

many cases, however, phenotypic preselection of lines

could be useful. Complex traits like yield or physiological

traits are often correlated with morphological, disease

resistance and quality traits. Moreover, in hybrid breeding,

costly production and evaluation of testcross progenies

should only be performed for lines that meet minimum

requirements with respect to these traits. However, even

moderate preselection can have a significant effect on the

power of QTL detection and estimation of the effects of the

target traits. Consequently, statistical methods that take

into account the consequences of selection are required for

unbiased estimation of QTL effects.

In this study, we provide exact formulas for quantifying

the change of allele frequencies within marker classes,

expectations of marker contrasts and the variance of the

marker contrasts under truncation selection for two QTL

(Qi;Qj) affecting the same or a correlated trait. The for-

mulas are very powerful because they are valid for a wide

range of genetic models. The underlying theory does not

make assumptions about the degree of interference in

crossover formation, the linkage phase of the two QTL, or

the presence or absence of epistasis and pleiotropy. For the

general case of two QTL affecting the target trait and a

correlated trait, for arbitrary values of linkage between the

QTL and the marker as well as for the genetic correlation

between the investigated traits, exact formulas have been

derived, which allow the calculation of the power of QTL

detection under selection as well as the calculation of the

selection bias in QTL effects. Our approach can also be

extended to distributions other than the bivariate normal

distribution as long as the regression of X* on X is linear.

For Case 3, where one normally distributed trait is con-

sidered we provided two numerical examples that show

how the formula for bias correction can be applied in

practical situations. Our numerical examples showed that

under moderate selection (aT = 50%) the selection induced

bias of QTL effects can be successfully corrected with

Eq. 20 for a wide range of effects explaining from 2 to

18% of the genetic variance (Table 2; Supplementary

material S5).

Selection-induced bias

Mackinnon and Georges (1992) were the first to demon-

strate the effects of truncation selection on linkage analysis

of quantitative traits. They provided theoretical predictions

but did not give analytical solutions for the expected

means, the contrast of marker classes and the correspond-

ing variances. In a comprehensive discussion of the causes

of the selection induced bias, they demonstrated that both,

the means of the (unknown) QTL genotype classes and the

mix of QTL genotypes within the marker genotype classes

are influenced by selection. The formulas presented here

allow the quantification of these factors (Di(ai) and wi) as a

function of the selected proportion aT for the case of

homozygous lines derived from biparental crosses. In

addition, the effects of selection on a correlated trait can

also be derived with the formulas. For both the general and

the different special cases that we reported, the bias

induced by truncation selection is mainly caused by a

selection asymmetry of the DH lines belonging to the two

marker classes Mk1
and Mk2

.

For the special case of direct selection on the trait for

which QTL mapping is performed and complete linkage

between the marker and the QTL (Case 3), the marker

contrast, its corresponding variance, and the power of the F

test, were quantified and illustrated in Fig. 1, relative to

their corresponding statistics in the absence of selection.

All graphs are presented as a function of the true QTL

effect ai and the selected proportion aT. Under truncation

selection, the relative bias in the expectation of the marker

Table 2 Parameters estimated in QTL mapping of Giberella ear rot

resistance (GBR, % of ear surface covered with mycelium) using the

unselected population of 150 DH lines (reference set) from cross

UH600 9 UH007 (see, Martin et al. 2011) and the subset of 75 DH

lines (selected subset) obtained under truncation selection with

aT = 50%

Chromosome Position in cM Reference set (N = 150) Selected subset (N = 75, aT = 50% )

Explained % of

genetic variance

Additive effect

âi (%)

Estimated

effect d̂i=2 (%)

Corrected estimated

effect x̂i (%)

1 238 17.67 8.22 2.82 7.78

2 42 18.12 7.55 2.77 7.65
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contrast (di/2ai) depends almost exclusively on the selected

proportion (aT) and is hardly affected by the size of the

QTL effect ai. Only for mild selection (aT [ 0.7), does the

relative bias in di/2ai for QTL of small effects exceed that

for QTL of large effects, where it is almost a linear func-

tion of aT. The reduction in the variance of the marker

contrast under selection relative to the corresponding var-

iance in the absence of selection (ri
2/4) follows the same

trend for QTL of small effects (ai \ 0.4) or values of

aT [ 0.5. However, for larger values of ai and smaller

values of aT, the ratio increases again and surpasses 1.0

(Fig. 1b). This is attributable to the fact that under these

conditions, truncation selection leads to large differences in

the proportion of DH lines represented in the two marker

classes so that the term Dp2
k1

in Eq. 30 outweighs the

reduction in the variances r2
k1

and r2
k2

. Moreover, the two

variances r2
k1

and r2
k2

become more heterogeneous as aT

decreases, due to the strong selection asymmetry among

the DH lines carrying alternative marker classes.

The asymmetry introduced by truncation selection also

complicates the calculation of the non-centrality parameter

/2 and the degrees of freedom necessary for the determi-

nation of the power. The power of the F test was deter-

mined relative to the power of an unselected population as

a function of ai and the selected fraction aT with a constant

number (N = 200) of DH lines (Fig. 1c).

Similarly to the marker contrast and its corresponding

variance, the power decreases when aT decreases.

For QTL of large effects (ai [ 0.6) the curve of the

relative power is flat and equal to 1.0 for a wide range of aT

(0.3 \ aT \ 1) and it decreases almost linearly for

aT \ 0.3. For QTL of medium effects (0.02 \ ai \ 0.6) the

curve of the relative power decreases smoothly with

decreasing aT, and it approaches zero at higher selection

intensities as compared to QTL of larger effects. Therefore,

under strong selection the relative power of QTL detection

is higher for QTL of small than of large effects. This result

is due to the fact that when large QTL effects are segre-

gating in the population under study and extreme selection

is applied, the number of DH lines in the two marker

classes is extremely unbalanced, while both marker classes

Mk1
and Mk2

are almost equally represented in the selected

fraction when smaller QTL effects are considered. For

QTL of small effects (ai \ 0.02) the power of QTL

detection is similar in the truncated and in the unselected

population approaching zero in both cases. As a conse-

quence their ratio is close to 1.0, as illustrated in the left

side of the graph (Fig. 1c).

Since the power of the F test depends on the population

size, we also determined the relative power for 100 and 400

DH lines (N) present in the selected fraction aT (results not

shown). The graphs in these cases have similar shape

compared to that in Fig. 1c. However, for N = 400, the

curve of the relative power is flat and equal to 1.0 for a

wider range of aT and ai than that found for N = 200, while

the opposite holds true for N = 100.

Taken together, these results suggest that the power of

QTL analysis under truncation depends on the population

size, the selected proportions, and the genetic architecture

of the quantitative trait. To optimize the power of QTL

detection in truncated populations all these parameters

have to be taken into account simultaneously.

Effects of incomplete linkage between the marker

and the QTL

With high-throughput genotyping having become available

at reasonable costs for many species, it is realistic to

assume that linkage between the QTL under selection and

the marker will be tight. Thus, for many scenarios the

complexity of the given formulas can be reduced by

assuming complete linkage (kik = 1, Cases 1a, 2, 3). In

some cases, however, incomplete linkage between the

marker and the QTL must be considered (Cases 1, 2a 3a),

e.g., when performing QTL analysis in species with limited

polymorphism of genetic markers and/or a large genome

size. Variation in linkage also needs to be taken into

account, when validating the effects of previously identi-

fied QTL with large confidence intervals in independent

but selected populations.

As is well known from single-marker analysis of vari-

ance in unselected populations, the conditional probabilities

of the QTL genotypes within the marker classes are a linear

function of the linkage value between the marker and the

QTL and consequently, estimates of the additive genetic

effect at the QTL are biased downward, if linkage is

incomplete (Soller et al. 1976). The same applies to the

estimation of the marker contrast under truncation selection.

For kjk \ 1 and kik \ 1 the estimated marker contrast is

reduced irrespective of the selection intensity. Under trun-

cation selection, however, the marker contrast is addition-

ally reduced by Di (see Eq. 15), which is always smaller

than 1 for ai
* [ 0. This reduction of the marker contrast is

caused by unequal frequencies of the marker classes Mk1

and Mk2
for kik [ 0 (Eq. 9) and is specific to the case of

truncation selection. In maize, significant changes in marker

allele frequency were found for marker loci located in the

vicinity of QTLs in a population of F4 independent families

after two cycles of recurrent selection on phenotype

(Moreau et al. 2004). This change in marker allele fre-

quency in response to selection can be useful for finding

markers associated with QTL in an approach called unidi-

rectional selective genotyping (Gallais et al. 2007; Navabi

et al. 2009). With unselected populations of homozygous

lines from biparental crosses or selection of both tails of
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their distribution, as is performed in bidirectional selective

genotyping (Lebowitz et al. 1987), frequencies of marker

classes are expected to be identical, if the variables

X�ðQir QjsÞ have a symmetric distribution around the mean

and identical proportions are selected in each tail. Thus, the

difference in the effective recombination rate between the

marker and the QTL within marker classes only needs to be

accounted for under truncation selection.

The effects of incomplete linkage between the marker

and the QTL on the variance of the marker contrast are

complex and formulas become unwieldy (results not

shown). In this study, we provide approximations of the

variance of the marker contrast for models assuming

kik = 1. Special cases of having restrictions on the linkage

parameter, e.g., when linkage between the marker and the

QTL is known from previous studies can be derived from

the general formula (Eqs. 29, 30). For the special case of a

half-sib design common in animal breeding, the combined

effect of selection and linkage on the variance of the

marker contrast has been shown by Mackinnon and

Georges (1992) using computer simulations.

Effect of selection on correlated traits

A selection-induced bias in QTL analyses of correlated

traits can be the result of linkage or pleiotropy. If two QTL

are linked and affect different traits (Case 1), a selection

bias is introduced also in the marker contrast for the trait

that was not selected for. This bias is the result of the

correlation between the residual effects and the marker

genotype means and is a function of the strength of the

correlation q between the two traits and the linkage phase

between the two QTL. From Eq. 42 (Supplementary

material S2), it can be seen that the selection bias will lead

to a reduction of the estimated marker contrast, if QTL Qi

and Qj are in coupling phase linkage and the correlation of

the residuals is positive. However, if the residual correla-

tion and the product of the effects at the two QTL have

opposite signs, then the selection bias of the marker con-

trast will lead to an inflation of the estimate dk compared to

its absolute value in the absence of selection. With plei-

otropy, the same principles apply because pleiotropy can be

considered a special case of two QTL affecting different

traits in complete linkage (Case 2). Thus, we can conclude

that truncation selection on trait X*affects the power of

QTL detection also for the correlated trait X and leads to

biased estimates of QTL effects.

Goodness of the approximations

The formulas presented here can be approximated using

restrictions on the model parameters. We give approximate

solutions for the marker contrasts (Table 1) and their cor-

responding variance assuming normal probability density

functions for two traits, QTL with small effects and/or

moderate selection intensities as well as complete linkage

between the marker and the QTL. The difference between

the expected marker contrast obtained with the approxi-

mation in Eq. 19 and with the exact formula in Eq. 17,

relative to the marker contrast in the absence of selection

(2ai) is shown in supplementary material S6 as a function

of the proportion selected aT and the size of the QTL effect

ai. As illustrated, the approximation gives satisfactory

results even with extreme values of ai and aT.

For the variance of the marker contrast rk
2, however,

approximations based on the infinitesimal model deviate

substantially from exact solutions for QTL with large

effects and low values of aT. Thus, under the hypothesis of

a geometric distribution of QTL effects and small values of

aT, QTL estimates and their standard errors must be cal-

culated using exact formulas presented here.

The approximations given for the different cases provide

also a means of relating our results with those presented in

the literature. For the case of only one QTL Qi with an

effect on X*, i.e., a�j ¼ 0; aa�ij ¼ 0; and using a Taylor

expansion for wi1
and wi2

as a function of ai
*, we obtain

from Eq. 8 the following approximation:

Dpi1 �
1

2
iðTÞ a�i ; ð41Þ

When accounting for the fact that selection is twice as

effective when performed in DH lines compared to an F2

population, this approximation translates directly to the

approximation for the change of allele frequency under

truncation selection given by Falconer (1989, Chap. 11).

Results obtained for bidirectional selection by Darvasi and

Soller (1992) and Bovenhuis and Spelman (2000) have

been derived using an analogous approach. Assuming QTL

with small effects, approximate bias corrections can be

derived for the marker contrast and the corresponding

variance based on a linear regression approach. In

bidirectional selection, the bias is positive and analogous

to the case of truncation selection, it is also a function of

the change in variance of the selected fractions compared

to the original population.

Bovenhuis and Spelman (2000) demonstrated with

computer simulations that the employed approximation is

quite robust with respect to the size of the QTL if the

selection intensity at both tails of the phenotypic distribu-

tion is not too high (aT = 10% selection at each tail).

However, results from bidirectional selection are not

directly applicable to the case of truncation selection,

because differences in marker genotype frequencies are

specific to truncation selection and need not be considered

in bidirectional selection for symmetric trait distributions.
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This fact adds significantly to the complexity of the for-

mulas for the calculation of the marker contrast and its

variance, as well as the calculation of the degrees of

freedom and the non-centrality parameter of the corre-

sponding v2 distribution.

Conclusions

For a wide range of genetic models the effect of truncation

selection on the selection bias in QTL effects as well as on

the power of QTL detection has been derived for the case of

homozygous lines derived from biparental crosses. The

theoretical results and numerical examples clearly show

that depending on the magnitude of QTL effects, high

selection intensities (aT B 50%) can lead to a dramatic

reduction in the power of QTL detection and that approxi-

mations based on the infinitesimal model deviate substan-

tially from exact solutions. The problem of reduced power

of QTL detection with incomplete linkage between the

marker and the QTL is aggravated by truncation selection

due to different effective recombination rates between the

marker and the QTL within each marker class. Truncation

selection on correlated traits also reduces the power of QTL

detection and introduces a selection bias in estimated QTL

effects. The presented formulas allow quantification and

correction of the selection bias of marker contrasts, opening

the possibility of obtaining unbiased QTL effect estimates

even from phenotypically preselected data.
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